

WIRELESS POWER WEEK

17-21 June 2019, LONDON

IEEE MTT-S Wireless Power Transfer Conference (WPTC) &

IEEE PELS Workshop on Emerging Technologies: Wireless Power (WoW)

PROGRAM

Wireless Power Week 2019

Bringing together the two major wireless power events: IEEE MTT-S Wireless Power Transfer Conference (WPTC) and IEEE PELS Workshop on Emerging Technologies: Wireless Power (WoW)

Conference Co-Chairs:

Paul D. Mitcheson, Imperial College London Hubregt J. Visser, Eindhoven University of Technology

Technical Program Committee Co-Chairs:

Grant A. Covic - The University of Auckland David C. Yates - Imperial College London Alessandra Costanzo - University of Bologna Bart Smolders - Eindhoven University of Technology

WPW School Chair:

Nuno Carvalho - University of Aveiro, Portugal

Local Organising Committee Chairs:

Lingxin Lan -Imperial College London, UK Juan Arteaga- Imperial College London, UK

The conference proceedings will be published in IEEEXplore, separately for WPTC and WoW

Contents

Committees	1
Chairs	1
TPC Chairs	1
WPTC	1
WoW	I
TPC Members	2
Local Organising Committee	2
General Information	4
Registration & Information Desk	4
Local Area Map	5
Floor Plan	6
Program	8
Tuesday 18 June	12
Registration and Opening	12
Plenary Talk I	12
WPTC Session I – Systems for Power and Data Transfer	12
WoW Session I – Magnetic Designs	12
Coffee Break	13
Plenary Talk 2	13
Lunch	13
Joint Invited Talk I	13
WPTC Session 2 – Novel Rectifier Solutions	14
WoW Session 2 – System Characterisation	14
Poster Session I and Coffee Break	15
15:30 – 17:00 Poster Session I – WPTC	15
15:15 – 17:00 Poster Session I – WoW	19
Wednesday 19 June	21
Registration	21
WPTC Session 3 – Wearable and Biomedical Systems	21
WoW Session 3 – Multicoil Design	21
Plenary Talk 3	22
Coffee Break	22
WPTC Session 4 – Microwave Power Converters	22
WoW Session 4 – Auxiliary Systems and Emissions	23

Lunch	23
WPTC Session 5 – Unconventional WPT Links	23
Millimeter Wave Wireless Power Transmission-Technologies and Applications	23
WoW Session 5 - Industrial Design and Applications	24
Coffee Break	24
15:50 – 17:00 Panel Session – The future of WBG devices in power processing and wireless power	
Thursday 20 June	25
Registration	25
WPTC Session 6 – Antenna and Systems for WPT	25
WoW Session 6 – Dynamic IPT	25
Coffee Break	26
WPTC Session 7 - Capacitive and Inductive WPT	26
WoW Session 7 – High Frequency WPT	27
Lunch	27
WPTC Session 8 – Novel Transmitter Architectures	28
WoW Session 8 – Converter Design & Control	28
Poster Session 11 and Coffee Break	29
15:00 – 17:00 Poster Session II – WPTC	29
15:05 – 17:00 Poster Session II – WoW	34
18:00 – 22:00 Banquet	36
Friday 21 June	37
Registration	37
WPTC & WoW Joint Session I – High Power and Ultrasonic WPT	37
Coffee Break	37
WPTC & WoW Joint Session 2 – Moving WPT Systems	38
12:10 – 12:45 WPW 2020 Announcement and Closing Ceremony	38
WPW2019 Sponsors	39
Platinum sponsors:	39
Gold sponsors:	39
Silver sponsors:	39
Bronze sponsors:	40
Other sponsors:	40
Prize sponsors:	40

Committees

Chairs

Paul D. Mitcheson Imperial College London (United Kingdom)

Hubregt J. Visser
Eindhoven University of Technology
(The Netherlands)

TPC Chairs

WPTC

Alessandra Costanzo University of Bologna (Italy)

Bart Smolders
Eindhoven University of Technology
(The Netherlands)

WoW

Grant Covic
University of Auckland
(New Zealand)

David Yates Imperial College London (United Kingdom)

TPC Members

Juan Arteaga, Imperial College London (United Kingdom)

Alessandra Costanzo, University of Bologna (Italy)

Grant Covic, University of Auckland (New Zealand)

Lingxin Lan, Imperial College London (United Kingdom)

Christopher Kwan, Imperial College London (United Kingdom)

Bart Smolders, Eindhoven University of Technology (The Netherlands)

Hubregt Visser, Eindhoven University of Technology (The Netherlands)

David Yates, Imperial College London (United Kingdom)

Jesus Acero, University of Zaragoza (Spain)

Seungyoung Ahn, Korea Advanced Institute of Science and Technology (South Korea)

Federico Alimenti, University of Perugia (Italy)

David Arnold, University of Florida (United States of America)

Al Thaddeus Avestruz, University of Michigan (United States of America)

Ikuo Awai, Ryutech Corporation (Thailand)

Damienne Bajon, ISAE - Université de Toulouse (France)

Stephen Beeby, University of Southampton (United Kingdom)

Djuradj Budimir, University of Westminster (United Kingdom)

Steve Burrow, University of Bristol (United Kingdom)

Nuno Carvalho, University of Aveiro / IT Aveiro (Portugal)

Jung-Chih Chiao, The University of Texas at Arlington (United States of America)

Dong-Ho Cho, Korea Advanced Institute of Science and Technology (South Korea)

Bruno Clerckx, Imperial College London (United Kingdom)

Marco Dionigi, University of Perugia (Italy)

Simon Hemour, University of Bordeaux (France)

Aiguo Patrick Hu, University of Auckland (New Zealand)

Ron Hui, University of Hong Kong (Hong Kong)

Chi-Kwan Lee University of Hong Kong (Hong Kong)

Jenshan Lin, University of Florida (United States of America)

Chengbin Ma, Shanghai Jia Tong University (China)

Udaya Madawala, University of Auckland (New Zealand)

Diego Masotti, University of Bologna (Italy)

Richard McMahon, University of Warwick (United Kingdom)

Chris Mi, San Diego State University (United States of America)

Mauro Mongiardo, University of Perugia (Italy)

Giuseppina Monti, University of Salento (Italy)

Amir Mortazawi, University of Michigan (United States of America)

Kenjiro Nishikawa, Kagoshima University (Japan)

Young-Jin Park, KERI & UST (South Korea)

Volker Pickert, Newcastle University (United Kingdom)

Zbynek Raida, Brno University of Technology (Czech Republic)

Juan Rivas-Davila, Stanford University (United States of America)

Luca Roselli, University of Perugia (Italy)

Dominique Schreurs, Katholieke Universiteit Leuven (Belgium)

Naoki Shinohara, Kyoto University (Japan)

Hiroki Shoki, Toshiba Corporation (Japan)

Nobby Stevens, Katholieke Universiteit Leuven (Belgium)

Alex Takacs, University of Toulouse (France)

Luciano Tarricone, University of Salento (Italy)

Duleepa Thrimawithana, University of Auckland (New Zealand)

Ke Wu, University of Montreal (Canada)

Seho Kim, University of Auckland (New Zealand)

Jackman Lin, University of Auckland (New Zealand)

Local Organising Committee

Lingxin Lan

Juan Arteaga

Tom Van Nunen

Junghoon Kim

Christopher Kwan

Ioannis Nikiforidis

Mahmoud Ouda

Nunzio Pucci

Chairs' Welcome Message

On behalf of the organizing committee, it gives us enormous pleasure to welcome you to Wireless Power Week 2019 (WPW2019) at IET Savoy Place, London.

Wireless Power Week started in 2018 in Montreal, Canada, bringing together the IEEE MTT-S Wireless Power Transfer Conference (WPTC) and the IEEE PELS Workshop on Emerging Technologies: Wireless Power (WoW). This year, at the second edition of Wireless Power Week, we are happy to see an increase of over 30% in paper submissions, with 304 submissions in total. In total, 237 papers were accepted, giving an acceptance rate of 78%. There are 841 separate authors from 41 countries, of which 49% are from academia, 34% are students, 21% are from industry, 3% are from government, and 1% are from NGOs.

Wireless Power Transfer is a technology finding its way into products and so this year we have strived to make a strong connection between academia and industry. We see this reflected in the many contributions from industry and joint contributions from industry and academia. The technical program is led by 4 plenary talks, 2 joint-track invited talks, and 4 track-specific invited talks. The conference has both a WPTC/MTT track and a WoW/PELS track, but all tickets allow access to all sessions, so please feel free to roam between tracks as you wish.

We are delighted to enjoy the support from this year's sponsors and exhibitors, and we hope you will make the most of the exhibition, which is co-located with the posters.

The highlight of the social program is the conference banquet, to be held on Thursday evening, in "Tesla's Secret London Laboratory". We are fortunate that the banquet falls on "Power Electronics Society Day" and are happy that PELS, MTT and other members of the WPW community can get together and network in what promises to be an interesting environment!

There are many people we wish to thank, who have put an enormous amount of time and effort into Wireless Power Week. The TPC, chaired by Alessandra Costanzo and Bart Smolders (WPTC) and Grant Covic and David Yates (WoW) have given valuable time shaping the technical program. Nuno Borges Carvalho chaired the WPW School, held on Monday at Imperial College London. The local organizing committee, chaired by Lingxin Lan and Juan Arteaga, have worked tirelessly to make the conference happen.

Thank you for joining us at WPW2019, and we hope you will have an enjoyable and productive conference and enjoy your stay in London.

Paul D. Mitcheson

Imperial College London

P. D. Mitcheson

Hubregt J. Visser

Eindhoven University of Technology

General Information

Registration & Information Desk

The Registration and Information Desk will be open during the following times:

Meeting room Locations

Plenary Kelvin Lecture Theatre (Ground floor)

WPTC Kelvin Lecture Theatre

WoW Turing Lecture Theatre (Second floor)

Joint Invited Talks Kelvin Lecture Theatre

Posters Maxwell Library & Siemens Board Room (First floor)

Exhibitors Maxwell Library

Refreshments Maxwell Library & Siemens Board Room

Registration Desk Flowers Room (Ground floor)
Banquet Ivory House, "Tesla's Secret Lab"

Name Badges

All attendees must wear their name badges at all times to gain admission to all conference events.

Electronic Proceedings

One copy of the Electronic Proceedings will be provided to you on a flash drive during registration.

Traveller's Checks and Credit Cards

Credit cards, including MasterCard®, Visa® and American Express®, and traveller's checks are accepted at most hotels, restaurants, and souvenir shops.

Tipping Standards

Tipping of 10-12.5% is standard for good service at restaurants with table service. Note that tipping and taxes are usually included in the bill. Tips are not expected in pubs when you are not dining.

Smoking

There is no smoking in Savoy Place and in "Tesla's Secret Lab". Smoking is forbidden by law in the UK in all public buildings, public transport and in taxis.

Mobile Phones

As a courtesy to your fellow attendees, please turn off your mobile phone ringer during the conference.

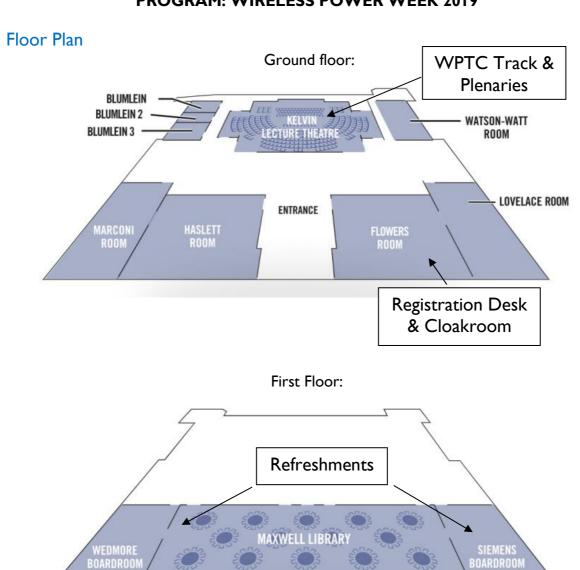
Food at the Venue

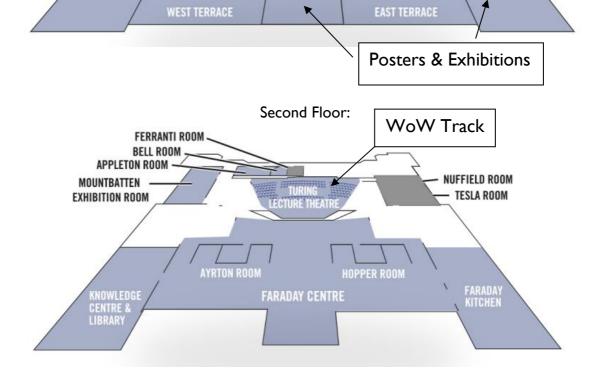
Please note that food bought outside cannot be brought into IET Savoy Place.

Local Area Map

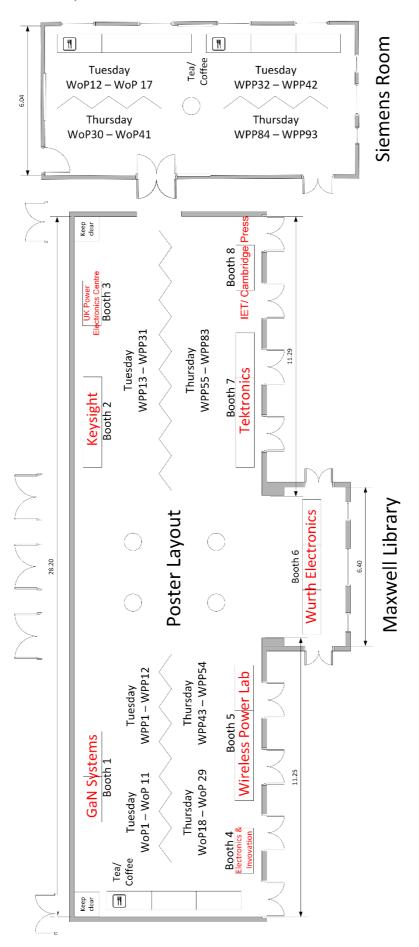
Nearby Places to Eat:

- I. Pret A Manger Sandwiches
- 2. Caffè Nero Coffee shop
- 3. Pizza Express Pizza place
- 4. Starbucks Coffee shop
- 5. Joe Allen American food
- 6. Wasabi Japanese Sushi and bento
- 7. Byron Casual dining burger place
- 8. Costa Coffee Coffee shop
- 9. Nando's South African style chicken dishes
- 10. Pizza Hut Pizza place
- II. Wagamama Asian/ Japanese style cuisine
- 12. Barrafina Spanish tapas
- 13. Chinatown (Many Chinese restaurants)


Tube Stations:


- I. Embankment ~5 minutes walk
- 2. Temple Station ~5 minutes walk
- 3. Charing Cross Station ~7 minutes walk
- 4. Leicester Square ~ II minutes walk

Banquet: Tesla's Lost London Laboratory:


Ivory House St. Katharine's dock EIW IAT

(Take the Circle/District line from Temple/Embankment Station to Tower Hill Station)

Posters & Exhibition room layout:

Program

Monday

18:00-22:00 IET Savoy Place Registration & Welcome reception

Tuesday

08:00-08:25 Flowers Room Registration & Coffee

08:25-08:55 Kelvin Lecture Theatre Welcome talk

08:55-09:40 Kelvin Lecture Theatre

Plenary talk I - Alex Gruzen (CEO of WiTricity)

Wireless Charging: Driving EV Adoption and the Autonomous Future

09:45-11:15
Kelvin Lecture Theatre
WPTC session 1
Systems for Power and Data Transfer

09:45-11:15
Turing Lecture Theatre
WoW session 1

Systems for Power and Data Transfer

11:15-11:40

Maxwell Library & Siemens Board Room

Coffee Break

11:40-12:25

Kelvin Lecture Theatre

Plenary talk 2 - Alexander Gerfer (CEO/CTO of Würth Elektronik)

Market & Future of Global Wireless Power Transfer Industry

12:25-13:45

Lunch

13:45-14:10

Kelvin Lecture Theatre

Joint invited talk I - Paul Wiener (GaN Systems, Canada)

Moving to a World without Wires

14:15-15:30
Kelvin Lecture Theatre
WPTC session 2
Novel Rectifier Solutions

14:15-15:30
Turing Lecture Theatre
WoW session 2
System Characterisation

15:30-17:00

Maxwell Library & Siemens Board Room

Poster session & Coffee

Wednesday

08:00-08:25 Flowers Room Registration & Coffee

08:25-09:55
Kelvin Lecture Theatre
WPTC session 3
Wearable and Biomedical Systems

08:25-09:55
Turing Lecture Theatre
WoW session 3
Wearable and Biomedical Systems

10:00-10:45

Kelvin Lecture Theatre

Plenary talk 3 - Mirko de Melis (Lead Scientist EMEA - Medtronic)
Advances in Wireless Power Transfer Technology & Implanted Medical Devices

10:45-11:15

Maxwell Library & Siemens Board Room

Coffee Break

11:15-12:30
Kelvin Lecture Theatre
WPTC session 4
Microwave Power Converters

11:15-12:30
Turing Lecture Theatre
WoW session 4
Auxiliary Systems and Emissions

12:30-13:45 Lunch

13:45-15:25

Kelvin Lecture Theatre

Invited talk – Hooman Kazemi (Raytheon, USA)

Millimeter Wave Wireless Power Transmission-

Technologies and Applications

WPTC session 5 Unconventional WPT Links 13:45-15:25

Turing Lecture Theatre

Invited talk – Jürgen Meins

(University of Braunschweig, Germany)

Solution for simplified wireless Inductive Power

Transfer

WoW session 5

Industrial Design and Applications

13:25-15:50

Maxwell Library & Siemens Board Room

Coffee Break

15:50-17:00

Kelvin Lecture Theatre

Panel session

The future of WBG devices in power processing and wireless power

Thursday

08:00-08:25 Flowers Room Registration & Coffee 08:25-09:55 **Kelvin Lecture Theatre** WPTC session 6 Antenna Systems for WPT

08:25-09:55 **Turing Lecture Theatre** WoW session 6 Dynamic IPT

09:55-10:25 Maxwell Library & Siemens Board Room

Coffee Break

10:25-11:55 **Kelvin Lecture Theatre** WPTC session 7 Capacitive and Inductive WPT

13:20-15:00

Novel Transmitting Architectures

10:25-11:55 Turing Lecture Theatre WoW session 7 High Frequency WPT

11:55-13:20 Lunch

Kelvin Lecture Theatre Invited talk - Zoya Popovic (University of Colorado, USA) powering WPTC session 8

13:20-15:00 **Turing Lecture Theatre** Invited talk - Burak Ozpineci (Oak Ridge National Laboratory, USA) WPT: from µW/cm² harvesting to kW capacitive Progress Towards Extreme Fast Wireless Static and Dynamic Charging WoW session 8 Converter Design & Control

> 15:00-17:00 Maxwell Library & Siemens Board Room Poster session 2 & Coffee

18:00-22:00 Banquet "Tesla's Lost London Laboratory"

Friday

08:00-08:25

Flowers Room

Registration & Coffee

08:25-09:45

Kelvin Lecture Theatre

WPTC & WoW joint session I

High Power and Ultrasonic WPT

09:45-10:30

Kelvin Lecture Theatre

Plenary talk 4 - Irina Khromova (Head of Science and Technology - Metaboards Ltd)

Large-area wireless charging enabled by metamaterials

10:30-11:00

Maxwell Library & Siemens Board Room

Coffee Break

11:00-12:10

Kelvin Lecture Theatre

WPTC & WoW joint invited talk 2 – Dinesh Kithany (HIS Markit, United Kingdom)

Wireless power market set to evolve beyond mobile phones – Market overview

WPTC & WoW joint session 2

Moving WPT Systems

12:10-12:45

Kelvin Lecture Theatre

WPW2020 announcement & Closing ceremony

Tuesday 18 June

Registration and Opening

08:00 Registration & Coffee

08:25 Welcome Talk

Paul Mitcheson, Hubregt Visser

Plenary Talk I

Kelvin Lecture Theatre

Chairs: Bart Smolders, Grant Covic

08:55 Wireless Charging: Driving EV Adoption and the Autonomous Future

Alex Gruzen

WiTricity, United States of America

09:40 Transit

WPTC Session I – Systems for Power and Data Transfer

Kelvin Lecture Theatre

Chairs: Bruno Clerckx, Luca Roselli

09:45 Experimental Analysis of Harvested Energy and Throughput Trade-Off in a Realistic

SWIPT System

Junghoon Kim¹, Bruno Clerckx¹, Paul D. Mitcheson¹
¹Imperial College London, United Kingdom

10:00 Experimental Characterization of Narrowband Power Optimized Waveforms

Takashi Ikeuchi¹, Yoshihiro Kawahara¹, Joshua R. Smith²

¹University of Tokyo, Japan, ²University of Washington, United States of America

10:15 <u>Power Allocation Method Using Pilot Signal for Simultaneous Transmission of Power and</u>

Information

Nam-I Kim¹, Dae geun Yang¹, Ju Yong Lee¹, Dong-Ho Cho¹

¹KAIST, South Korea

10:30 A New Wireless Power and Data Transmission Circuit for Cochlear Implants

Iman Abdali Mashhadi¹, Behzad Poorali¹, Majid Pahlevani¹

¹University of Calgary, Canada

10:45 Receiving ASK-OFDM in Low Power SWIPT Nodes without Local Oscillators

Steven Claessens¹, Ya Ting Chang¹, Dominique Schreurs¹, Sofie Pollin¹

¹University of Leuven, Belgium

I I:00 A Wideband Efficient Rectifier Design for SWIPT

Ya Ting Chang¹, Steven Claessens¹, Sofie Pollin¹, Dominique Schreurs¹

University of Leuven, Belgium

Chairs: Jürgen Meins,	Christopher Kwan
-----------------------	------------------

09:45	Optimising Ferrite-Less Pad Reflection Winding with a Multi-Objective Genetic Algorithm Matthew G.S. Pearce ¹ , Michael J. O'Sullivan ¹ , Claudio Carretero ² , Grant A. Covic ¹ , John T, Boys ¹ University of Auckland, New Zealand, ² University of Zaragoza, Spain
10:00	Evaluation of Soft Magnetic Composites for Inductive Wireless Power Transfer Daniel Barth ¹ , Giuseppe Cortese ² , Thomas Leibfried ¹ ¹ Karlsruhe Institute of Technology, Germany, ² Daimler AG, Germany
10:15	Avoiding Null Power Point in DD coils Manuele Bertoluzzo ¹ , Giuseppe Buja ¹ , Hemant Dashora ¹ University of Padova, Italy
10:30	A Dead-Angle-Free Omnidirectional Wireless Power Transfer Bowen Zhang ¹ , Zhen Zhang ¹ , Hongliang Pang ¹ , Cong Xie ¹ , Xingyu Li ¹ , Lin Yang ¹ ¹ Tianjin University, China
10:45	Misalignment Influence on Resonance Shielding in Wireless Power Transfer for Electric Vehicles Myrel Alsayegh ¹ , Markus Clemens ¹ , Benedikt Schmuelling ¹ ¹ University of Wuppertal, Germany
11:00	Reduction of the Shielding Effect on the Coupling Factor of an EV WPT System Karim Kadem ¹ , Yann Le Bihan ¹ , Mohamed Bensetti ¹ , Éric Laboure ¹ , Antoine Diet ¹ , Mustapha Debbou ²

Coffee Break

11:15 Coffee Break

Plenary Talk 2

Kelvin Lecture Theatre

Chairs: Alessandra Costanzo, David Yates

11:40 Market & Future of Global Wireless Power Transfer Industry

¹Sorbonne Université, France, ²Vedecom, France

Alexander Gerfer

Würth Elektronik, Germany

Lunch

12:25 Lunch

Joint Invited Talk I

Kelvin Lecture Theatre

Chairs: Ron Hui, Nuno Carvalho

13:45 Moving to a World without Wires

Paul Wiener

GaN Systems, United States of America

14:10 Transit

W/PT	در دم	sion 2	-N	Ovel	Rectifier	So	lutions
V V I		SICHT /					

Kelvin Lecture Theatre

Chairs: Nuno Carvalho, Pedram Mousawi

14:15 Input Impedance Calculation of a Multi-Stage Rectifier Circuit

Hubregt Visser¹, Hans Pflug², Shady Keyrouz³

¹imec, Netherlands, ²GTX Medical, Netherlands, ³Antenna Company, Netherlands

14:30 GaN Schottky Barrier Diode for Sub-Terahertz Rectenna

Sei Mizojiri¹, Kengo Takagi¹, Kohei Shimamura¹, Shigeru Yokota¹, Masafunari Fukunari², Yoshinori Tatematsu², Teruo Saito²

¹University of Tsukuba, Japan, ²University of Fukui, Japan

14:45 Design of High Voltage Output for CMOS Voltage Rectifier for Energy Harvesting Design

Jefferson A. Hora¹, Eryk Dutkiewicz¹, Xi Zhu¹
¹University of Technology Sydney, Australia

15:00 Wide Dynamic Range Rectifier Circuit with Varactor Tuning Technique

Ayako Suzuki¹, Koshi Hamano¹, Hayato Shimizu¹, Hiroshi Okazaki², Yasunori Suzuki², Kunihiro Kawai², Atushi Fukuda², Kenjiro Nishikawa¹

¹Kagoshima University, Japan, ²NTT Docomo, Inc., Japan

15:15 2.4 GHz CMOS Design RF-to-DC Energy harvesting with Charge Control System for WSN Application

Jefferson A. Hora¹, Eryk Dutkiewicz¹, Xi Zhu¹
¹University of Technology Sydney, Australia

WoW Session 2 – System Characterisation

Turing Lecture Theatre Chairs: Ron Hui, Patrick Hu

14:15 Optimal Excitation of Multi-transmitter Wireless Power Transfer System without Receiver

<u>Sensors</u>

Prasad Jayathurathnage¹, Fu Liu¹
¹Aalto University, Finland

14:30 Loss Shifted Design of Transcutaneous Energy Transfer Systems

Alexander Enssle¹, Lukas Elbracht¹, Nejila Parspour¹, Marco Zimmer¹, Joerg Heinrich¹ University of Stuttgart, Germany

14:45 Measuring the Q-factor of IPT Magnetic Couplers

Gaurav R. Kalra¹, Matthew G. S. Pearce¹, Seho Kim¹, Duleepa J. Thrimawithana¹, Grant A. Covic¹ University of Auckland, New Zealand

15:00 Impedance Measurement on Inductive Power Transfer Systems

Marius Hassler¹, Oguz Atasoy², Morris Kesler², Karl Twelker², Tobias Achatz³, Markus Jetz³, Josef Krammer¹

¹BMW Group, Germany, ²WiTricity Corporation, United States of America, ³Zollner Elektronik AG, Germany

15:15 A Reflected Impedance Estimation Technique for Inductive Power Transfer

Lingxin Lan¹, Juan M. Arteaga¹, David C. Yates¹, Paul D. Mitcheson¹ Imperial College London, United Kingdom

Poster Session I and Coffee Break

15:30 – 17:00 Poster Session I – WPTC

Chair: Diego Masotti

WPTC-PI - Near-Field Links

Maxwell Library

WPPI Design of Coil Turn Ratios to Achieve Extensive Load Range and High Efficiency in

Wireless Power Transfer System

Heng-Ming Hsu¹, Yu-Fu Liu¹, Jian-Kai Liao¹, Pang Yu Liu¹

¹National Chung Hsing University, Taiwan

WPP2 Using Metallic Coil to Optimize the Heating Efficiency for Tumor Hyperthermia

Guoxiong Chen¹, Chenxi Wang¹, Yuhua Cheng¹, Gaofeng Wang¹

¹Hangzhou Dianzi University, China

WPP3 <u>Virtual Impedance Control for Efficient Power Transfer in Electromagnetic Levitation</u>

Melting System

Moria Elkayam¹, Yotam Frechter¹, Idan Sassonker¹, Alon Kuperman¹

Ben-Gurion University of the Negev, Israel

WPP4 High Q-factor Coil with Transistorized Negative Impedance Converter for Mobile

Applications

Tae-Hyung Kim¹, Gi-Ho Yun², Jong-Gwan Yook¹

¹Yonsei University, South Korea, ²Sungkyul University, South Korea

WPP5 Global Optimization Design of Inductively Coupled Power Transfer System Parameter

Qiang Bo^{1,2}, Lifang Wang^{1,3}, Tao Chengxuan¹

¹Institute of Electrical Engineering Chinese Academy of Sciences, China, ²University of Chinese Academy of Sciences, China, ³Beijing Co-Innovation Center for Electric Vehicles,

China

WPP6 Modeling of Magnetic Coupled Coil for Wireless Power Transfer in Conductive Medium

Jongwook Kim¹, Haerim Kim¹, Dongwook Kim¹, Yujun Shin¹, Chanjun Park¹, Seungyoung Ahn¹

¹KAIST, South Korea

WPP7 A Design Procedure for CPT System with LCL Resonant Network

Hongfei Xia¹, Huanhuan Wu¹, Yuhua Cheng¹, Gaofeng Wang¹

¹Hangzhou Dianzi University, China

WPP8 85-kHz band 450-W Inductive Power Transfer for Unmanned Aerial Vehicle Wireless

Charging Port

Shuichi Obayashi¹, Yasuhiro Kanekiyo¹, Kouju Nishizawa², Hiroaki Kusada²

¹Toshiba Corporation, Japan, ²Tepco Research Institute, Japan

WPP9 Design of Free-Positioning Wireless Power Transfer using A Half-Rectangular Prism

Transmitting Coil

Nam Ha-Van¹, Hoang Le-Huu¹, Chulhun Seo¹

Soongsil University, South Korea

WPP10 Wireless Power Transfer System Using Sub-Wavelength Toroidal Magnetic Metamaterials

Yuqian Wang¹, Xu Chen¹, Yewen Zhang¹, Kai Fang¹, Yong Sun¹, Yunhui Li¹, Hong Chen¹

¹TongJi University, China

WPPII	Design of Magnetic Shielding Structure for Wireless Charging Coupler Heqi Xu ¹ , Houji Li ¹ , Chunfang Wang ¹ ¹ Qingdao University, China
WPP12	Study on Series Printed-Circuit-Board Coil Matrix for Misalignment-Insensitive Wireless Charging Jianchao Li ¹ , Liming Wang ¹ , Fanghui Yin ¹ ¹ Tsinghua University, China
WPP13	An Efficiency Optimization Strategy in a Wireless Power Transfer Device Under Seawater Wei Gao ¹ , Jingjing Jiang ² , Jianxin Gao ¹ , Da Li ¹ ¹ Naval University of Engineering, China, ² Central Hospital in Wuhan, China
WPP14	Optimal Coil Design for Wireless powering of Biomedical Implants Considering Safety Constraints Erik Andersen ¹ , Binh Duc Truong ¹ , Shad Roundy ¹ ¹ University of Utah, United States of America
WPP15	Wireless Power Transfer System whose Input / Output Ratio is Determined Only by Self-Inductance Kenji Nara ¹ , Naofumi Madoiwa ² , Yasuyoshi Kaneko ¹ ¹ Saitama University, Japan, ² Tokyo Institute of Technology, Japan
WPP16	Alternative Configuration of Open-Bifilar Coil for Self-Resonant Wireless Power Transfer System Caio M. de Miranda ¹ , Ségio F. Pichorim ¹ Federal University of Technology, Brazil
WPP17	AC Loss Behavior of Wireless Power Transfer Coils Christoph Utschick ¹ , Christian Merz ¹ , Cem Som ¹ ¹ Würth Elektronik eiSos GmbH & Co. KG, Germany
WPP18	Investigation of Magnetic Field Shielding by Mesh Aluminum Sheet in Wireless Power Transfer System Cancan Rong ¹ , Xiong Tao ¹ , Conghui Lu ¹ , Minghai Liu ¹ ¹ Huazhong University of Science and Technology, China
WPP19	Efficiency Factor Calculation for Contactless Energy Transfer Systems Jörg Heinrich ¹ , Philipp Präg ¹ , Nejila Parspour ¹ , David Maier ¹ ¹ University of Stuttgart, Germany
WPP20	Current Distribution Analysis for Automatic Resonator Design in Wireless Power Transfer Yoshiaki Narusue ¹ , Misaki Fujishiro ¹ , Yoshihiro Kawahara ¹ , Hiroyuki Morikawa ¹ 'University of Tokyo, Japan
WPP21	Research on Dynamic Wireless Charging of Electric Vehicle Based on Double LCC Compensation Mode Xian Zhang¹, Jie Wang¹, Ming Xue¹, Yang Li¹, Qingxin Yang¹ ¹Tianjin Polytechnic University, China
WPP22	Research on Shield Structure of Inductively Coupled Power Transfer System Houji Li ¹ , Heqi Xu ¹ , Chunfang Wang ¹ Qingdao University, China

WPP23	Maximum Efficiency Point Tracking in Inductive Links: Series versus Parallel Receiver's
	Compensation
	Dabla Dáras Nicalil Farmanda Cibrainal

Pablo Pérez-Nicoli¹, Fernando Silveira¹
¹Universidad de la República, Uruguay

WPP24 Omni-directional Inductive Wireless Power Transfer with 3D MID inductors

Kamotesov Sergkei¹, Philippe Lombard², Vincent Semet², Bruno Allard², Maël Moguedet¹, Michel Cabrera²

¹Smart Plastic Products (S2P), France, 2Université de Lyon, France

WPP25 Maximising Inductive Power Transmission using a Novel Analytical Coil Design Approach

Maryam Heidarian¹, Samuel J. Burgess¹, Radhakrishna Prabhu¹, Nazila Fough¹

¹Robert Gordon University, United Kingdom

WPP26 Novel Calculation Model for Bunched Litz Wires

Christian Roth¹, Dieter Gerling¹

Universitaet der Bundeswehr Muenchen, Germany

WPP27 Efficiency Improvement for Three-coil Cooperative Inductive Power Transfer Systems

Quoc-Trinh Vo¹, Quang-Thang Duong¹, Minoru Okada¹ Nara Institute of Science and Technology, Japan

WPP28 Multiple-Receiver Wireless Power Transfer System Using a Cubic Transmitter

Hoang Le-Huu¹, Nam Ha-Van¹, Chulhun Seo¹ Soongsil University, South Korea

WPP29 Capacitively Coupled Resonators for Misalignment-Tolerant Wireless Charging through Metallic Cases

Fabiano Cezar Domingos¹, Susanna Vital de Campos de Freitas¹, Rashid Mirzavand I, Pedram Mousavi¹

¹University of Alberta, Canada

WPP30 Omnidirectional Power Transfer Through the Inductive and Capacitive Coupling Region of a Transmitter

Yen Po Wang¹, Reo Kometani¹, Shin'ichi Warisawa¹ University of Tokyo, Japan

WPP31 Parallel Resonant Inductive Wireless Power Transfer

Hans W. Pflug^{1,2}, Steven Beumer², Koen Weijand, Tina Bartulović Ćulibrk¹, Jeroen Tol¹, Hubregt J. Visser^{2,3}

¹GTX Medical BV, The Netherlands, ²Eindhoven University of Technology, The Netherlands, ³imec / Holst Centre, The Netherlands

WPTC-P2 -Materials

Siemens Board Room

WPP32 A Novel Dual Band Defected Ground Structure for Short Range Wireless Power Transfer Applications

Shalin Verma¹, Dinesh Rano¹, Mohammad Hashmi^{1,2}
¹IIIT Delhi, India, ²Nazarbajev University, Kazakhstan

WPP33 Wireless Power Transfer through Low-e Glass

Shengming Shan¹, Vincent Hsiao¹, Ruey-Bing Hwang²

¹SWR Technology Inc., United States of America, ²National Chiao Tung University, Taiwan

WPP34 Designment of Wireless Power Transmitting System with Magnetic Megahertz Metamaterials

Guo Li¹, Lifang Lang¹, Jie Ren¹, Kai Fang¹, Yong Sun¹, Yewen Zhang¹, Yunhui Li¹, Hong Chen¹ Tongji University, China

WPP35 An Efficient Metamaterial Based Design of Wireless Power Transfer System

Pratim Dasmahapatra¹, Tarakeswar Shaw¹, Soumyadeep Kal¹, Debasis Mitra¹ Indian Institute of Engineering Science and Technology, India

WPP36 Qi Compliant Wireless Charger with PCB Integrated Magnetic Material

Gerald Weis¹, Ivan Salkovic¹, Gerald Weidinger¹, Mario Schober¹, Johannes Stahr¹, Ronald Sekavcnik¹

¹AT & S Austria Technologie & Systemtechnik Aktiengesellschaft, Austria

WPTC-P3 -Data and Energy Transmission

Siemens Board Room

WPP37 Multiple FSK Data and Power Transmission System using Magnetic Resonance Wireless Power Transfer

Masaki Ishii¹, Kosuke Yamanaka¹, Masahiro Sasaki¹ Shibaura Institute of Technology, Japan

WPP38 A Novel Simultaneous Wireless Information and Power Transfer System

Xin Liu¹, Xijun Yang¹, Dianguang Ma¹, Nan Jin², Xiaoyang Lai¹, Houjun Tang¹

Shanghai Jia Tong University, China, ²Zhengzhou University of Light Industry, China

WPP39 125 kHz Wireless Energy and 25 kbps Data Transfer for Wearable Device

Diyang Gao¹, Rongpeng Zhai¹, Peter Baltus¹, Huib Visser¹, Hao Gao¹ Eindhoven University of Technology, The Netherlands

WPP40 <u>Data Communication over a Novel Capacitive Resonant Wireless Power Transmission</u>

System

Semion Belau¹, Susanna Vital de Campos de Freitas¹, Fabiano Cezar Domingos¹, Rashid Mirzavand¹, Pedram Mousavi¹
¹University of Alberta, Canada

WPP41 Impact of 5G Waveforms on Energy Harvesting Rectifier Performance

Oludotun Olukoya¹, Boris Malcic², Djuradj Budimir¹, Djuradj Budimir³
¹Westminster University, United Kingdom, ²University of Banja Luka, Bosnia and Herzegovina, ³University of Belgrade, Serbia

WPP42 Mixed-Time Scale Based Adaptive Mode Switching for Dual Mode SWIPT

Jong Jin Park¹, Jong Ho Moon¹, Kang-Yoon Lee¹, Dong In Kim¹ Sungkyunkwan University, Korea

15:15 – 17:00 Poster Session I – WoW

Chair: Christopher Kwan

WoW-PI - Optimisation/Economics

Maxwell Library

WoPI Parameter Optimization of Modern Tram Wireless Power Transfer Power Supply System

Geng Yuyu¹, Wang Yi¹, Yang Zhongping¹, Lin Fei¹

¹Beijing Jiaotong University, China

WoP2 Inductive Power Transfer Charging Infrastructure for Electric Vehicles: A New Zealand

Case Study

Mingyue (Selena) Sheng¹, Ajith Viswanath Sreenivasan¹, Grant A. Covic¹, Douglas Wilson¹, Basil Sharp¹

University of Auckland, New Zealand

WoP3 Data-Driven Design and Assessment of Dynamic Wireless Charging Systems

Diala Haddad¹, Theodora Konstantinou¹, Akhil Prasad¹, Zhanxiang Hua¹, Dionysios Aliprantis¹, Konstantina Gkritza¹, Steven Pekarek¹

I Purdue University, United States of America

WoW-P2 - Magnetic Design

Maxwell Library

WoP4 Investigation of the Influence of Split Ferrite Tiles in an Inductive Charging System with

FEM-Simulation

Timo Lämmle¹, Nejila Parspour², Christian Fuchs²

¹MAHLE International GmbH, Germany, ²University of Stuttgart, Germany

WoP5 Statistical Model of Foreign Object Detection for Wireless EV Charger

Kaiwen Gan¹, Huan Zhang¹, Chen Yao¹, Xiaoyang Lai¹, Nan Jin², Houjun Tang¹

Shanghai Jiao Tong University, China, ²Zhengzhou University of Light Industry, China

WoW-P3 - System Characterisation

Maxwell Library

WoP6 Analysis of Bifurcation in Series-Series and Series-Parallel Compensated Inductive Power

Transfer

Michal Košík¹, Jiří Lettl¹

¹Czech Technical University in Prague, Czech Republic

WoP7 Quadrature Demodulator based Output Voltage and Load Estimation of a Resonant

Inductive WPT Link

O. Trachtenberg¹, A. Shoihet¹, E. Beer¹, E. Fux², N. Tiktin², S. Kolesnik², A. Kuperman² ¹Nuclear Research Center of the Negev, Israel, ²Ben-Gurion University of the Negev, Israel

WoP8 Maximum Efficiency Control of a Wireless EV Charger with On-Line Parameter Calculation

Ali Zakerian¹, Sadegh Vaez-Zadeh¹, Amir Babaki¹

University of Tehran, Iran

WoP9 Power Transfer Profile Boosting in DWC Systems by Two-Element Compensation Network

Manuele Bertoluzzo¹, Rupesh Jha², Giuseppe Buja¹

¹University of Padova, Italy, ²Zeal College of Engineering and Research, India

WoPIO Analysis of Electromagnetic Force on Metal Objects in Vertical Direction of Wireless Power Transfer

Xian Zhang¹, Xuejing Ni¹, Qingxin Yang¹, Bin Wei², Songcen Wang²

¹Tianjin Polytechnic University, China, ²China Electric Power Research Institute, China

WoPII Wireless Power At-A-Distance Technology – A Strategy for Nurturing Ecosystem
Development

Philip Swan¹

Ossia Inc, United States of America

WoW-P4 — Industrial Design and Applications

Siemens Boardroom

WoPI2 MPPT Control for PV based Wireless Power Transfer System in Lunar Rover by Secondary Side Converter

Bingcheng Ji¹, Katsuhiro Hata¹, Takehiro Imura¹, Yoichi Hori¹, Shuhei Shimada², Osamu Kawasaki²

¹University of Tokyo, Japan, ²Japan Aerospace Exploration Agency, Japan

WoPI3 <u>Strategy for Design of Misalignment Tolerant Inductive Powering System for Medical Implants</u>

Arseny Danilov¹, Eduard Mindubaev¹, Rafael Aubakirov¹, Konstantin Gurov¹, Oleg Surkov¹, Sergey Selishchev¹

IJSC ZITC, Russia

WoPI4 A Wide-Range IPT System for Body Worn Sensors

Stephen G. Burrow¹, Lindsay R. Clare¹
¹University of Bristol, United Kingdom

WoPI5 Approaching the Power Limit of an Electrodynamic WPTS with Nearly Coupling-Independent Operation

Binh Duc Truong¹, Shad Roundy¹

University of Utah, United States of America

WoP16 <u>Wireless Motor Drives with a Single Inverter in Primary Side of Power Transfer Systems</u>
Amir Babaki¹, Sadegh Vaez-Zadeh¹, Mohammad Jahanpour-Dehkordi¹, Ali Zakerian¹
¹University of Tehran, Iran

WoP17 Design of a 30 kW-85 kHz Wireless Power Transfer System for Charging Electric Vehicles Leyla Arioua¹, Hadi Alawieh¹, Salim Guerroudj¹

'VEDECOM institute, France

Wednesday 19 June

D				
Re	σις	tra	Ť١	\circ r
110	دىج	u a	CIT	\mathbf{v}

08:00 Registration & Coffee

WPTC Session 3 – Wearable and Biomedical Systems

Kelvin Lecture Theatre

Chairs: Alessandra Costanzo, Alexandru Takacs

08:25 An Octave Bandwidth RF Harvesting Tee-Shirt

José Antonio Estrada¹, Eric Kwiatkowski¹, Ana López-Yela², Mónica Borgoňós-Garcia², Daniel Segovia-Vargas², Taylor Barton, and Zoya Popović¹
¹University of Colorado, United States of America, ²Universidad Carlos III de Madrid, Spain

08:40 A Wearable Passive Microwave Fluid Sensor Wirelessly Activated

Francesca Benassi¹, Nicola Zincarelli¹, Diego Masotti¹, Alessandra Costanzo¹ University of Bologna, Italy

08:55 Wireless Power Receiver with Wide Dynamic Range for Biomedical Implants

Hankyu Lee¹, Seungchul Jung¹, Yeunhee Huh¹, Sang Joon Kim¹ Samsung Advanced Institute of Technology, South Korea

09:10 Millimeter-Wave Textile Antenna for On-Body RF Energy Harvesting in Future 5G

Networks

Mahmoud Wagih¹, Alex S. Weddell¹, Steve Beeby¹ University of Southampton, United Kingdom

09:25 Energy Harvesting of a NFC Flexible Patch for Medical Applications

Madjda Bouklachi¹, Marc Biancheri-Astier¹, Antoine Diet¹, Yann Le Bihan¹ Sorbonne Université, France

09:40 Feasibility Study of a Wireless Power Transfer System Applied to a Left Ventricular Assist Device

T. Campi¹, S. Cruciani¹, F. Orlando¹, F. Maradei², M. Feliziani¹ University of L'Aquila, Italy

WoW Session 3 – Multicoil Design

Turing Lecture Theatre

Chairs: David Yates, lackman Lin

08:25 Investigation of a DD2Q Pad Structure for High Power Inductive Power Transfer

Benny J. Varghese¹, Abhilash Kamineni¹, Regan A. Zane¹ Utah State University, United States of America

08:40 Analysis of Intermediate Resonant Couplers for High Displacement Inductive Power Transfer

Ahmad Bilal¹, Grant Covic¹, John Boys¹, Seho Kim¹ University of Auckland, New Zealand

08:55	Magnetic Design of a Q-Coll for a 10 kW DDQ system for inductive Power Transfer				
	Denis Kraus ¹ , Hans-Georg Herzog ¹ ¹ Technical University of Munich, Germany				
09:10	Reduced Switch Operation of the Tripolar for Interoperability in Inductive Power Transfer Kaiquan Sun¹, Grant A. Covic¹, Duleepa Thrimawithana¹, Seho Kim¹ ¹University of Auckland, New Zealand				
09:25	A Three-Phase Inductive Power Transfer Coil with SAE J2954 WPT3 Magnetic Interoperability				
	Thorsten Kurpat ¹ , Lutz Eckstein ¹ RWTH Aachen University, Germany				
09:40	Power Transferability Analysis of I-SS-Buck Dynamic Wireless Charging System				
	Shuangcheng Song ¹ , Zhihao He ¹ , Chao Cui ¹ , Qianfan Zhang ¹ ¹ Harbin Institute of Technology, China				
09:55	Transit				
	Talk 3 Lecture Theatre Grant Covic, Alessandra Costanzo				
10:00	Advances in Wireless Power Transfer Technology & Implanted Medical Devices Mirko de Melis Medtronic, United States of America				
Coffee	Break				
10:45	Coffee Break				
Kelvin L	Session 4 – Microwave Power Converters Lecture Theatre Djuradj Budimir, Kenjiro Nishikawa				
11:15	Time Trajectory Rectifier Impedance Analysis Hans W. Pflug ¹ , Hubregt J. Visser ² GTX Medical BV, The Netherlands, ² imec / Holst Centre, The Netherlands				
11:30	Investigation of a GaN-Based Bidirectional Wireless Power Converter Using Resonant Inductive Coupling Haimeng Wu¹, Xiang Wang¹, Bowen Gu¹, Volker Pickert¹ ¹Newcastle University, United Kingdom				
11:45	Comparisons of MOSFET and Relay Switches in Impedance Matching Networks for Wireless Power Transfer Cristina A. Alexandru ¹ , Dibin Zhu ¹ ¹ University of Exeter, United Kingdom				
12:00	A Comparison of Tunnel Diode and Schottky Diode in Rectifier at 2.4 GHz for Low Input Power Region Veselin Manev ¹ , Huib Visser ¹ , Peter Baltus ¹ , Hao Gao ¹ Eindhoven University of Technology, The Netherlands				

12:15 High Sensitive 2.4 GHz Band Rectenna with Direct Matching Topology

Shunya Tsuchimoto¹, Kenji Itoh¹, Keisuke Noguchi¹, Jiro Ida¹

¹Kanazawa Institute of Technology, Japan

WoW Session 4 – Auxiliary Systems and Emissions

Turing Lecture Theatre

Chairs: Ahn Seungyoung, Jae Lee

II:15 Effect of Fields Generated Through Wireless Power Transfer on Implantable Biomedical Devices

Nunzio Pucci¹, Paul D. Mitcheson¹, Christopher H. Kwan¹, David C. Yates¹ Imperial College London, United Kingdom

II:30 Conducted Emission in an 85 kHz, 50 kW WPT System with Opposite-Phase Transfer and Spread Spectrum

Masatoshi Suzuki¹, Kenichirou Ogawa¹, Tetsu Shijo¹, Yasuhiro Kanekiyo¹, Kazuhiro Inoue¹, Koji Ogura¹, Shuichi Obayashi¹, Masaaki Ishida¹

¹Toshiba Corporation, Japan

I 1:45 Omnidirectional Vehicle Sensing for Wireless Power Transfer Applications

Charles A. Robinson¹, Hao Lu¹, C. W. Van Neste¹

¹Tenessee Technological University, United States of America

12:00 Wireless Charging in Electric Vehicles: EMI/EMC Risk Mitigation in Pacemakers by Active Coils

S. Cruciani¹, T. Campi¹, F. Maradei², M. Feliziani¹

¹University of L'Aquila, Italy, ²Sapienza University of Rome, Italy

12:15 <u>Eigenvector Lookup Position Detection Method for Wireless Power Transfer of Electric</u> Vehicles

Shihui Xu¹, Huan Zhang¹, Chen Yao¹, Dianguang Ma¹, Nan Jin², Houjun Tang¹ ¹Shanghai Jiao Tong University, China, ²Zhengzhou University of Light Industry, China

Lunch

12:30 Lunch

WPTC Session 5 – Unconventional WPT Links

Kelvin Lecture Theatre

Chairs: Naoki Shinohara, Ke Wu

13:45 Invited Talk

Millimeter Wave Wireless Power Transmission-Technologies and Applications

Hooman Kazemi

Raytheon, United States of America

14:10 Harvesting for Scattering Modulated RF-Signals Receivable by Mobile Telephones

Matthias Schütz¹

IDP Invent AG, Switzerland

14:25	Study on Antennas for Wireless Power Transfer to In-Line Inspection Robots Isami Sato ¹ , Naoki Shinohara ¹ ¹ Kyoto University, Japan
14:40	A New Circularly Polarized Antenna Suppressing Surface Wave for Microwave Power Transmission Seishiro Kojima¹, Naoki Shinohara¹ ¹Kyoto University, Japan
14:55	An RF-Powered IoT Node for Environment Sensoring John Nicot ¹ , Ludivine Fadel ¹ , Thierry Taris ¹ ¹ University of Bordeaux, France
15:10	Compact Dual-Band Rectenna on a New Paper Substrate Based on Air-Filled Technology E. Vandelle ¹ , G. Ardila ¹ , S. Hemour ² , K. Wu ³ , T.P. Vuong ¹ ¹ Université Grenoble Alpes, France, ² Université de Bordeaux, France, ³ Polytechnique Montréal, Canada
Turing L	lession 5 – Industrial Design and Applications Lecture Theatre lichard McMahon, Abhilash Kamineni
13:45	Invited Talk Solution for simplified wireless Inductive Power Transfer Jürgen Meins University of Braunschweig, Germany
14:10	Thermal Characterisation of a Double-D Pad Seho Kim ¹ , Maedeh Amirpour ¹ , Grant Covic ¹ , Simon Bickerton ¹ University of Auckland, New Zealand
14:25	Design and Construction of a 100 W Wireless Charger for an E-Scooter at 6.78 MHz Christopher H. Kwan ¹ , Juan M. Arteaga ¹ , David C. Yates ¹ , Paul D. Mitcheson ¹ Imperial College London, United Kingdom
14:40	Contactless Energy Transfer for Inductive Electrically Excited Synchronous Machines David Maier ¹ , Nejila Paspour ¹ , Jonas Kurz ¹ ¹ University of Stuttgart, Germany
14:55	Performance of Inductive Power Transfer-based Pavements of Electrified Roads Ahmed Marghani ¹ , Douglas Wilson ¹ , Tam Larkin ¹ ¹ University of Auckland, New Zealand
15:10	Inductive Power Delivery with Acoustic Distribution to Wireless Sensors David E. Boyle ¹ , Steven W. Wright ¹ , Michail E. Kiziroglou ¹ , Akshayaa Pandiyan ¹ , Eric M. Yeatman ¹ Imperial College London, United Kingdom
Coffee E	Break

Coffee Break 15:25

15:50 – 17:00 Panel Session – The future of WBG devices in power processing and wireless power Kelvin Lecture Theatre Chaired by: Compound Semiconductor Applications Catapult

Thursday 20 June

Registration

08:00 Registration & Coffee

WPTC Session 6 - Antenna and Systems for WPT

Kelvin Lecture Theatre

Chairs: Bart Smolders, Pedram Mousavi

08:25 Energy Focusing Through Layout-Based Frequency-Diverse Arrays

Diego Masotti¹, Mazen Shanawani¹, Alessandra Costanzo¹

University of Bologna, Italy

08:40 Implementation of a High-Efficient and Simple CPW Rectenna at the 2.45 GHz ISM Radio

Band

Mohamed Mansour¹, Haruichi Kanaya¹

¹Kyushu University, Japan

08:55 An Efficient RF Power Transfer Scheme using Location-based Phase-controlled Array

Antenna

Eui Bum Lee¹, Wonshil Kang¹, Hyunchul Ku¹

¹Konkuk University, South Korea

09:10 Study on Multipath Retrodirective for Efficient and Safe Indoor Microwave Power

Transmission

Taichi Sasaki¹, Naoki Shinohara¹ Kyoto University, Japan

09:25 Efficiency of Wireless Power transfer with a Multi-sine Source Optimized for the

Propagation Channel

Regis Rousseau¹, Guillaume Villemaud¹, Florin Hutu¹

¹University of Lyon, France

09:40 Beaming Efficiency of I-D Frequency-Scanned Based Radiative WPT System for Wireless

Sensor Networks

Miguel Poveda-García¹, José Luis Gómez-Tornero¹

¹Technical University of Cartagena, Spain, ²University of Aveiro, Portugal

WoW Session 6 – Dynamic IPT

Turing Lecture Theatre

Chairs: Regan Zane, Seho Kim

08:25 Charging Infrastructure Design for In-motion WPT Based on Sensorless Vehicle Detection

System

Katsuhiro Hata¹, Takehiro Imura¹, Hiroshi Fujimoto¹, Yoichi Hori I, Daisuke Gunji²

University of Tokyo, Japan, 2NSK Ltd., Japan

08:40 Push-pull driven Low-cost Coupler Array for Dynamic IPT systems

Vahid Zahiri Barsari¹, Duleepa | Thrimawithana¹, Grant A. Covic¹

¹University of Auckland, New Zealand

08:88 Sensorless Automatic Stop Control of Electric Vehicle in Semi-dynamic Wireless Charging
System

Jirawat Sithinamsuwan¹, Kensuke Hanajiri¹, Katsuhiro Hata¹, Takehiro Imura¹, Hiroshi Fujimoto¹, Yoichi Hori¹

University of Tokyo, Japan

09:10 Comparison of Single and Three phase Dynamic Charging Systems for Electric Vehicles

Van-Binh Vu¹, Mohamed Dahidah¹, Volker Pickert¹, Van-Tung Phan¹ Newcastle University, United Kingdom

09:25 One-Sided Magnetic Field Halbach Pad for EV Wireless Charging

Mei Su^{1,2}, Tao Ling^{1,2}, Qi Zhu^{1,2}, and Pengcheng Wang^{1,2}

¹Central South University, China, 2Human Provincial Key Laboratory of Power Electronics Equipment and Grid, China

09:40 A Concept of Multiphase Dynamic Charging System with Constant Output Power for Electric Vehicles

Van-Binh Vu¹, Mohamed Dahidah¹, Volker Pickert¹, Van-Tung Phan¹ Newcastle University, United Kingdom

Coffee Break

09:55 Coffee Break

WPTC Session 7 – Capacitive and Inductive WPT

Kelvin Lecture Theatre

Chairs: Pablo Pérez-Nicoli, Giuseppina Monti

10:25 <u>High Efficient Wireless Power Transfer System for AUV with Multiple Coils and Ferrite</u> under Sea

Ryosuke Hasaba¹, Katsuya Okamoto¹, Tatsuo Yagi¹, Souichi Kawata¹, Kazuhiro Eguchi¹, Yoshio Koyanagi¹

Panasonic Corporation, Japan

10:40 <u>Capacitive Resonant System to Charge Devices with Metallic Embodiments</u>

Susanna Vital de Campos de Freitas¹, Fabiano Cezar Domingos¹, Rashid Mirzavand¹, Pedram Mousavi¹

¹University of Alberta, Canada

10:55 Optimizing the Power Output for a Capacitive Wireless Power Transfer System with N receivers

Ben Minnaert¹, Franco Mastri², Alessandra Costanzo², Mauro Mongiardo³ and Nobby Stevens⁴ Odisee University College of Applied Sciences, Belgium, ²University of Bologna, Italy, ³University of Perugia, Italy, ⁴KU Leuven, Belgium

II:10 Multifactorial Rig for Study of Inductive Powering Systems with Arbitrary Orientation of the Coils

Arseny A. Danilov¹, Eduard A. Mindubaev¹, Konstantin O. Gurov¹ JSC ZITC, Russia

11:25 <u>Determination of the Optimal Resonant Condition for Multi-receiver Wireless Power</u> Transfer Systems

Seung Beop Lee¹, Mingi Kim², In Gwun Jang²

¹Chonbuk National University, South Korea, ²KAIST, South Korea

I 1:40 A Wireless Charging Coil in Printed Circuit Board with Partially Split Conductors for Low Resistance

Yujun Shin¹, Jaehyoung Park¹, Haerim Kim¹, Bumjin Park¹, Jongwook Kim¹, Chanjun Park¹,

Seungyoung Ahn!

KAIST, South Korea

WoW Session 7 – High Frequency WPT

Turing Lecture Theatre

Chairs: Burak Ozpineci, Juan Arteaga

10:25 Quarter Wavelength Surface Structures for Improved Operation in Unipolar Capacitive Power Transfer

Donald Chaney¹, Charles A. Robinson¹, C. W. Van Neste¹

¹Tennessee Technological University, United States of America

10:40 A Phase-controlled Stacked-transmitter Wireless Power Transfer System for Magnetic Field Beamforming

Ning Kang¹, Ming Liu², Chengbin Ma¹

¹Shanghai Jiao Tong University, China, ²Princeton University, United States of America

10:55 <u>High Power Density Stacked-Coils Based Power Receiver for MHz Wireless Power</u>
Transfer

Jibin Song¹, Ming Liu², Minfan Fu³, Chengbin Ma¹

¹Shanghai Jiao Tong University, China, ²Princeton University, United States of America, ³ShanghaiTech University, China

11:10 Design of a Switchable Driving Coil for Magnetic Resonance Wireless Power Transfer Yelzhas Zhaksylyk¹, Ulrik Hanke¹, Mehdi Azadmehr¹

¹University of South-Eastern Norway, Norway

I 1:25 E-Field Analysis of a 3D Capacitive Power Transfer Configuration with Single Source Excitation

Qi Zhu^{1,2}, Lixiang Jackie Zou³, Mei Su^{1,2}, Aiguo Patrick Hu³

¹Central South University, China, ²Human Provincial Key laboratory of power Electronics Equipment and Grid, China, ³University of Auckland, New Zealand

I 1:40 Compactly Assembled Transmitting and Receiving Modules with Shield for Capacitive Coupling Power Transfer System

Aam Muharam^{1,3}, Mitsuru Masuda², Reiji Hattori¹, Abdul Hapid³

¹Kyushu University, Japan, ²Furukawa Electric Co., Japan, ³Indonesian Institute of Sciences, Indonesia

Lunch

11:55 Lunch

WPTC Session 8 – Novel Transmitter Architectures

Kelvin Lecture Theatre

Chairs: Bart Smolders, Simon Hemour

13:20 Invited Talk

WPT: from μ W/cm² harvesting to kW capacitive powering

Zoya Popovic

University of Colorado, United States of America

13:45 <u>2.45-GHz Wireless Power Transmitter with Dual-Polarization-Switching Cantenna for LED Accessories</u>

Kosuke Yoshida¹, Norifumi Kashiyama¹, Miho Kanemoto¹, Shogo Umemoto¹, Hisashi Nishikawa¹, Ami Tanaka¹, Takakuni Douseki¹

¹Ritsumeikan University, Japan

14:00 Thermal Performance of Class-FF Converter Used for Wireless Power Transfer in Retinal Implants

Iman Abdali Mashhadi¹, Behzad Poorali¹, Majid Pahlevani¹ University of Calgary, Canada

14:15 <u>Development of an Automatic Bidirectional Wireless Charging System for Mobile Devices</u> James Washak¹, Cristina Alexandru¹, Dibin Zhu¹ ¹University of Exeter, United Kingdom

14:30 Implementation of Constant Current Performance of 13.56MHz Wireless Power Transfer System

Heng-Ming Hsu † , Yan-Kai Huang † , Tung-Lin Wu † National Chung Hsing University, Taiwan

14:45 A Distributed, Phase-locked, Class-E, RF Generator with Automatic Zero-Voltage Switching

Robert A. Moffatt¹, Trevor Howarth¹, Connor Gafner¹, Jeffrey J. Yen¹, Feng-Kai Chen¹, Josh Yu¹ Etherdyne Technologies Inc., United States of America

WoW Session 8 - Converter Design & Control

Turing Lecture Theatre

Chairs: Volker Pickert, Duleepa Thrimawithana

13:20 Invited Talk

Progress Towards Extreme Fast Wireless Static and Dynamic Charging Burak Ozpineci

Oak Ridge National Laboratory, United States of America

13:45 <u>500W 13.56MHz Class EF Push-pull Inverter for Advanced Dynamic Wireless Power</u> Applications

Samer Aldhaher¹, Paul D. Mitcheson¹

Imperial College London, United Kingdom

14:00 <u>Design Method for Resonant Inductive Power Transfer Systems Using a Resistor Ladder Prototype</u>

Aaron D. Scher¹, Bogdan Z. Savic¹, Kalena L. Ching¹, Irvin H. Nguyen¹, William Garibo¹, Mohamud Hussein¹

¹Oregon Institute of Technology, United States of America

Misalignment Tolerant Control of an Inductive Charger for Electric Vehicles with V2G 14:15 **Possibilities**

Wiljan Vermeer¹, Soumya Bandyopadhyay¹, Pavol Bauer¹ Delft University of Technology, The Netherlands

14:30 Design of the Primary Side LCC Compensation Network Based on ZVS for Wireless **Power Transfer Systems**

Yuwang Zhang^{1,2}, Yanjie Guo^{1,3}, Lifang Wang^{1,3}

¹Key Laboratory of Power Electronics and Electric Drives Institute of Electrical Engineering Chinese Academy of Sciences, China, ²University of Chinese Academy of Sciences, China, ³Beijing Co-Innovation Center for Electric Vehicles

14:45 A Wireless Power Transfer System with a Primary-Side Process Variable for Maximum **Efficiency Control**

Aaron D. Scher

¹Oregon Institute of Technology, United States of America

Poster Session II and Coffee Break

15:00 - 17:00Poster Session II - WPTC

Chair: Ben Minnaert

WPTC-P4— WPT Architectures

Maxwell Library

WPP43 Improving Conversion Loss Performance of Fully Passive Harmonic Transponder at Low Temperature

Xiaoqiang Gu¹, Simon Hemour², Ke Wu¹

Polytechnique Montreal, Canada, 2University of Bordeaux, France

WPP44 DIY Electromagnetic Phantoms for Biomedical Wireless Power Transfer Experiments

Tom van Nunen¹, Esmee Huismans¹, Rob Mestrom¹, Mark Bentum¹, Hubregt Visser¹ ¹Eindhoven University of Technology, The Netherlands

WPP45 Voltage Multiplier Rectifier with Second Harmonic Resonance for Wireless Power Transfer System

luwan Kim¹, Wonshil Kang¹, Hyunchul Ku¹ ¹Konkuk University, South Korea

WPP46 Demonstration of Sub-Terahertz Coplanar Rectenna using 265 GHz Gyrotron

Sei Mizojiri¹, Kengo Takagi¹, Kohei Shimamura¹, Shigeru Yokota¹, Masafumi Fukunari², Yoshinori Tatematsu², Teruo Saito²

University of Tsukuba, Japan, 2University of Fukui, Japan

WPP47 The Logistics System by Rotary Wing Unmanned Aerial Vehicle with 28GHz Microwave **Power Transmission**

Satoru Suganuma¹, Duc Hung Nguyen², Yuma Nishioka¹, Kohei Shimamura¹, Koichi Mori², Shigeru Yokota¹

¹University of Tsukuba, Japan, ²Nagoya University, Japan

WPP48	Design of Rectifiers for High Power Wireless Power Transmission System Ce Wang ¹ , Bo Yang ¹ , Naoki Shinohara ¹ ¹ Kyoto University, Japan
WPP49	A Rectenna Using Copper Foil on Glass to Reduce Cost of Space Solar Power Evan Shi ¹ , Erik Centeno ¹ , Rafael Figueroa ¹ , Cheng Qi ¹ , Gregory Durgin ¹ Georgia Tech, United States of America
WPP50	Photonic-Assisted Field-Probing Receiver for kW Peak-Power Wideband Radiative Wireless Transmitter Young-Pyo Hong ¹ , Jung-II Park ¹ , No-Weon Kang ¹ , Dong-Joon Lee ¹ ¹ Korea Research Institute of Standards and Science, South Korea
WPP51	An RF-Powered Self-Locating Flexible Building Environment Sensor System David Schwartz ¹ , Shabnam Ladan ¹ , Vijay Karthik Venkatasubramanian ¹ , Joseph Lee ¹ , Ping Mei ¹ , Brent Krusor ¹ , Clinton Smith ¹ , Shakthi Gowri ¹ Palo Alto Research Center, United States of America
WPP52	We've Got the Power: Overcoming the Distance Enlargement Fraud with Wireless Power Transfer Leo Botler ¹ , Konrad Diwold ¹ , Kay Römer ¹ ¹ Graz University of technology, Austria
WPP53	An Improved Rectenna Design for Battery-free Wireless Sensors and Structural Health Monitoring A. Sidibe ¹ , A. Tacaks ¹ , A. Okba ¹ , G. Loubet ¹ ¹ Université de Toulouse, France
WPP54	Chipless Backscatter for Vital e-Health Sensing Felisberto Pereira ¹ , Ricardo Correia ¹ , Nuno B. Carvalho ¹ ¹ Universidade de Aveiro, Portugal
WPP55	Pacemaker Recharge Through Inductive Resonant Wireless Power Transfer Giuseppina Monti ¹ , Laura Corchia ¹ , Luciano Tarricone ¹ ¹ University of Salento, Italy
WPP56	Implantable Rectenna System for Biomedical Wireless Applications Shuoliang Ding ¹ , Stavros Koulouridis ² , Lionel Pichon ¹ ¹ Université Paris-Sud, France, ² University of Patras, Greece
WPP57	A Study on Dynamic Charging Using Off-Resonant Coil Array With Receiver-side Compensation Tatsuya Ohashi¹, Quang-Thang Duong¹, Minoru Okada¹ ¹Nara Institute of Science and Technology, Japan
WPP58	A Reconfigurable Antenna for Enhancing the Magnetic Coupling in WPT Jaafar Al Sinayyid ¹ , Hakim Takhedmit ¹ , Patrick Poulichet ¹ , Marjorie Grzeskowiak ² , Antoine Diet ³ , Gaelle Lissorgues ¹ ¹ Université Paris-Est, France, ² Deos Isae Supaero, France, ³ Université Paris-Sud, France
WPP59	13.56 MHz Near Field Magnetic Coupling Efficiency Evaluation for IMDs Powering Antoine Diet ¹ , Marc Biancheri-Astier ¹ , Yann Le Bihan ¹ , Pablo Pérez-Nicoli ² , Madjda Bouklachi ¹ , Olivier Meyer ¹ , Fernando Silveiro ² , Lionel Pichon ¹ ¹ Université Paris-Sud, France, ² Universidad de la República, Uruguay

WPP60	Research on Wireless Power Transfer in Modular Spacecraft
	Longlong Zhang ¹ , Lei Wang ¹ , Haidi Yu ¹ , Yan Zong ¹ , Yucai Zhang ¹ , Xudong Ming ¹ , Zhenyu
	Zhang ¹
	Shandong Institute of Space Electronics Technology, China

WPP61 Charging Base Stations Deployment Algorithms for Wireless Rechargeable Sensor Networks

Peng Wan¹, Baoyu Wu¹, Yuhua Cheng¹, Gaofeng Wang¹ ¹Hangzhou Dianzi University, China

WPP62 Coupled Magnetic Field-Circuit Analysis of Inductive Power Transfer in High-Potential Transformers

Alex Pokryvailo¹, Hiren Dave¹

¹Spellman High Voltage Electronics Corp., United States of America

WPP63 Charging Area Extensible Wireless power Transfer System with an Orthogonal Structure Chen Xu¹, Yuan Zhuang¹, Anqi Chen¹, Yi Huang¹, Jiafeng Zhou¹

¹University of Liverpool, United Kingdom

WPP64 Innovative Technique for HPA Characteristics Extraction and Accurate Predistorsion Function Modeling

Blaise Mulliez¹, Emmanuel Moutaye¹, Hélène Tap¹ Université de Toulouse, France

WPP65 MSA with Stacked Metal Rings for Rectenna System using Narrow Beam

Seiya Mizuno¹, Ryosuke Kashimura^{1, 2}, Tomohiro Seki¹, Yasunori Suzuki³, Hiroshi Okazaki³ Nihon University, Japan, ²Japan Radio Co., Ltd., Japan, ³NTT Docomo Inc., Japan

WPP66 Free-Positioning Magnetic Resonance Wireless Power Transfer System for Biomedical Devices

Kyungmin Na¹, Jieun Kim¹, Young-Jin Park¹

¹Korea Electrotechnology Research Institute, South Korea

WPP67 Analysis of the Efficiency of Wireless Power Transfer to Multiple Receivers

Wanberton Gabriel de Souza¹, Luciano Coutinho Gomes¹, Darizon Alves de Andrade¹, Lucas Rocha Lobo Lannes¹, Josemar Alves dos Santos Jr.¹, Eustáquio Fernandes Júnior¹
¹University Federal of Uberlândia, Brasil

WPP68 Geometric Quantities Characterizing Wireless Power Transfer Between a Resonator and Resonant Dipoles

Robert A. Moffatt¹

Etherdyne Technologies, Inc., United States of America

WPP69 Rectenna for Bluetooth Low Energy Applications

Boules A. Mouris¹, Wael Elshennawy², Panagiotis Petridis³, Yuan Ding³, Spyridon N. Daskalakis³ ¹KHT Royal Institute of Technology, Sweden, ²Orange Business Services, Egypt, ³Heriot-Watt University, United Kingdom

WPP70 Temperature Induced Degradation of RF Energy Harvesters Efficiency: Experiments and Interpretation

Massimo Merenda¹, Riccardo Carotenuto¹, Francesco G. Della Corte¹

¹Mediterranea University Reggio Calabria, Italy

WPP71 Analysis of Transmission Distance and Transmission Efficiency of Wireless Power Transfer Rongge Yan¹, Zexun Wu¹, Xiaoting Guo¹, Shaoging Cao¹ ¹Hebei University of Technology Traveling-Wave Fed Two-Dimensional Phased-Array Antenna for Microwave-Power WPP72 Transfer Naoki Hasegawa¹, Yuki Takagi¹, Yoshichika Ohta¹ Softbank Corp., Japan WPP73 Energy Harvesting Cooperative Wireless Systems: Probabilistic Modeling and Statistical M. Aparna¹, Bitragunta Sainath¹ ¹BITS Pilani, India WPP74 A Study of Improve Efficiency of Broad-Angle Rectenna Using Hybrid Coupler Yuki Tanaka¹, Kazuki Kanai¹, Ryosuke Hasaba¹, Hiroshi Sato¹, Yoshio Koyanagi¹, Takuma Ikeda¹, Hiroyuki Tani¹, Shoichi Kajiwara¹ and Naoki Shinohara² Panasonic Corporation, Japan, 2Kyoto University, Japan WPP75 Influences of Magnetic Couplings in Transmitter Array of MIMO Wireless Power Transfer **System** Kyungtae Kim¹, Ji-Woong Choi¹ Daegu Gyeongbuk Institute of Science and Technology, South Korea WPP76 Development of Wireless Power Supply Implantable Device Based on LED Li Yamin¹, Tang Jun¹, Liu Kun¹ ¹Chinese Academy of Sciences, China WPP77 Visualization of Energy Flow in Wireless Power Transfer Systems Hanwei Wang¹, Cheng Zhang², Shu Yuan Ron Hui³ ¹Tsinghua University, China, ²University of Manchester, United Kingdom, ³University of Hong Kong, China WPP78 Proposal of Simplified Transfer Function Model for Dynamic Rectified DC Voltage in **DWPT** Kodai Takeda¹, Wataru Ohnishi¹, Takefumi Koseki¹ University of Tokyo, Japan WPP79 Voltage Control and Current Distribution for Multiple-Coil Wireless Power Transfer Weikun Cai¹, Houjun Tang¹, Dianguang Ma¹, Xin Liu¹ Shanghai Jiao Tong University, China WPP80 A Self-Synchronous Rectifier for Application of W-level Input Power Ying Wang¹, Gao Wei¹, Fei You², Xumin Yu³, Yazhou Dong³, Xiaojun Li³ ¹Northwestern Polytechnical University, China, ²University of Electronic Science and Technology of China, China, 3China Academy of Space Technology, China

Experimental Evaluation of Coupling Coils for Underwater Wireless Power Transfer Cândido Duarte¹, Francisco Goncalves¹, Miguel Silva¹, Vasco Correia¹, Luis M. Pessoa¹

WPP81

INESC TEC and FEUP, Portugal

WPP82 Hybrid Mode Wireless Power Transfer for Wireless Sensor Network

Shi-Wei Dong¹, Xiaojun Li¹, Xumin Yu¹, Yazhou Dong¹, Hao Cui¹, Tao Cui¹, Ying Wang¹, Shuo

Liu¹

¹China Academy of Space, China

WPP83 EMI Suppression of MEMS Honeycomb-Shaped Inductor on Oscillators for Wireless-

Powered IC Design

Hao-Jiun Wu¹, Po-Ming Wang¹, Tzuen-Hsi Huang¹, Sheng-Fan Yang²

¹National Cheng Kung University, Taiwan, 2Global Unichip Corp., Taiwan

WPTC-P5— Rectifiers and Converters

Siemens Board Room

WPP84 A Comparative Study of Conventional Rectifier Topologies for Low Power RF Energy

Harvesting

Jérôme Tissier¹, Mohsen Koohestani¹, Mohamed Latrach¹

¹ESEO-IETR, France

WPP85 Modified Log Periodic Spiral Antenna for Multi-Band RF Energy Harvesting Applications

Kapil Gangwar¹, Jérôme Tissier²

Indian Institute of Technology, India, 2ESEO-IETR, France

WPP86 Theoretical Analysis of Single Shunt Rectifiers

Takashi Hirakawa¹, Naoki Shinohara¹

¹Kyoto University, Japan

WPP87 Design of Buck Converter with Dead-time Control and Automatic Power-Down System

for WSN Application

Jefferson A. Hora¹, Aileen Chris Arellano², Eryk Dutkiewicz¹, Xi Zhu¹

¹University of Technology Sydney, Australia, ²MSU-lligan Institute of Technology,

Philippines

WPP88 A 19.6 dB Input Power Range 403 MHz Rectifier Based on Quality Factor in Matching

Technique

NgocDuc Au¹, Chulhun Seo¹

Soongsil University, South Korea

WPP89 Voltage-Double RF Rectifier using Inductive Matching Network

Muh-Dey Wei¹, Renato Negra¹

¹RWTH Aachen University, Germany

WPP90 10W Class High Power C-Band Rectifier Using GaN HEMT

Satoshi Yoshida¹, Kenjiro Nishikawa¹, Shigeo Kawasaki²

¹Kagoshima University, Japan, ²Japan Aerospace Exploration Agency (JAXA), Japan

WPP91 Automated Design Optimization for CMOS Rectifier Using Deep Neural Network (DNN)

Heng Wah Ho¹, Wendy W.Y. Lau²

¹GLOBALFOUNDRIES Singapore Pte. Ltd., Singapore, ²Nanyang Technological University,

Singapore

WPP92 2x2 Circularly Polarized Antenna Array with Equal Phases for RF Energy Harvesting in IoT

<u>System</u>

Osama M. Dardeer¹, Hala A. Elsadek², Esmat A. Abdallah², Hadia M. Elhennawy¹

¹Ain Shams University, Egypt, ²Electronics Research Institute, Egypt

WPP93 I MHz band rectenna with several rectifier devices in nW operation

Nobuhiko Yasumaru¹, Kanto Nakanishi¹, Kenji Itoh¹,Shunya Tsuchimoto¹, Takuya Yamada¹, Takayuki Mori¹, Jiro Ida¹

¹Kanazawa Institute of Technology, Japan

15:05 – 17:00 Poster Session II – WoW

Chair: Sam Aldhaher

WoW-P5 - Dynamic IPT

Maxwell Libaray

WoP18 Coupling Coefficient Estimation for Wireless Power Transfer System at Constant Input Power Operation

Haruko Nawada¹, Yoshiaki Takahashi¹, Katsuhiro Hata¹, Takehiro Imura¹, Hiroshi Fujimoto¹, Yoichi Hori¹. Takuva Yabumoto²

¹University of Tokyo, Japan, ²Mitsubishi Electric Corporation, Japan

WoPI9 A Dynamic Wireless Charging System with a Robust Output Voltage Respect To

Misalignment

Ali Ramezani¹, Mehdi Narimani¹
¹McMaster University, Canada

WoP20 A Dynamic Model for Contactless Energy Transfer Systems

Jannis Noeren¹, Nejila Parspour¹
¹University of Stuttgart, Germany

WoP21 Feasibility Study on In-motion Wireless Power Transfer System Before Traffic Lights Section

Dasiuke Gunji¹, Katsuhiro Hata², Osamu Shimizu², Takehiro Imura², Hiroshi Fujimoto² ¹NSK Ltd., Japan, ²University of Tokyo, Japan

WoP22 <u>Dual-phase IPT Track Primary Evaluation Using Normalized Coupling Factor</u>

Weitong Chen¹, Feiyang Lin¹, Grant Covic¹, John Boys¹ Auckland University, New Zealand

WoP23 An Alternate Arrangement of Active and Repeater Coils for Quasi-Constant Power Wireless EV Charging

Chunsheng Wang^{1,2}, Pengcheng Wang^{1,2}, Qi Zhu^{1,2}, Mei Su^{1,2}

¹Central South University, China, ²Human Provincial Key Laboratory of Power Electronics Equipment and Grid, China

WoP24 A Modular and Distributed Grid Interface for Transformer-less Power Supply to Road-side Coil Sections of Dynamic Inductive Charging Systems

Giuseppe Guidi¹, Salvatore D'Arco¹, Jon Are Suul^{1,2}

¹SINTEF Energy Research, Norway, ²Norwegian University of Science and Technology, Norway

WoW-P6 -	High	Frequency	WPT
----------	------	-----------	------------

Maxwell Library

WoP25 Load Adaptation of Capacitive Power Transfer System with a Four-Plate Compact Capacitive Coupler

Xueying Wu¹, Yugang Su¹, Xinyu Hou¹, Xiaodong Qing¹, Wanting Zhu¹ Chongqing University, China

WoP26 Impacts of Coupling Plates on Single-Switch Capacitive-Coupled WPT Systems

Yashwanth Bezawada¹, Ruiyun Fu², Yucheng Zhang¹

¹Old Dominion University, United States of America, ²Mercer University, United States of America

WoP27 A 13.56 MHz Inductive Power Transfer System Operating with Corroded Coils

Epameinondas Skountzos¹, Juan M. Arteaga¹, Eftychios Hadjittofis¹, David C. Yates¹ Kyra L. Sedransk-Campbell¹, Paul D. Mitcheson¹ Imperial College London, United Kingdom

WoP28 A High-Performance Double-Sided LC Compensated CPT System with Load-Independent

Constant Current Output Jing Lian¹, Xiaohui Qu¹

Southeast University, China

WoP29 A High Power WPT System for Through the Wall Applications

Tiefeng Shi¹, Paul Wiener¹
¹GaN Systems Inc., Canada

WoW-P7 - Converter Design & Control

Siemens Boardroom

WoP30 Triple Subdivision Cell-to-Cell Mapping Method for Global Analysis of WPT System

Chunsen Tang¹, Chunyan Yang¹, Yingjun Fei¹, Zhihui Wang¹, Zhiping Zuo¹, Zhenpeng Zhang² ¹Chongqing University, China, ²China Electronic Power Research Institute, China

WoP31 Full Duplex Communication Based on Partial Power Coil in Inductive Coupling Power Transfer System

Cheng Li¹, Zhi-Hui Wang¹, Yue Sun¹, Xin Dai¹

¹Chongqing University, China

WoP32 High-Power WPT Systems: Step-up Transformer vs. Partial-Series Tuning

Wenwei Victor Wang¹, Duleepa J. Thrimawithana¹ University of Auckland, New Zealand

WoP33 Efficiency Maximization in Wireless Power Transfer Systems for Resonance Frequency Mismatch

Helanka Weerasekara¹, Katsuhiro Hata¹, Takehiro Imura¹, Hiroshi Fujimoto¹, Yoichi Hori¹ University of Tokyo, Japan

WoP34 Advantages and Tuning of Zero Voltage Switching in a Wireless Power Transfer System

Francesca Grazian¹, Peter van Duijsen¹, Thiago B. Soeiro¹, Pavol Bauer¹ Delft University of Technology, The Netherlands

WoP35 <u>Surge Current Analysis of EV Wireless Charging System during Short-circuit Decoupling</u>
Process

Ke Shi¹, Chunsen Tang¹, Zhihui Wang¹, Zhiping Zuo¹ Chongqing University, China

WoP36 <u>Multiple-Receiver Wireless Power Transfer with Efficient Power Control Strategy</u>

Weikun Cai¹, Houjun Tang¹, Xiaoyang Lai¹, Longzhao Sun¹ Shanghai Jiao Tong University, China

WoP37 Inductive Power Transfer System with Automatic Control

Chenlei Liu¹, Xin Liu²

¹Shanghai Electric Power Research Institute, China, ²Shanghai Jiao Tong University, China

WoP38 Output Voltage Range of a Resonant Inductive WPT Link Operating in Load Independent

Yotam Frechter¹, Yegal Darhovsky¹, Alon Kuperman¹ Ben-Gurion University of the Negev, Israel

WoP39 Dynamic Modeling and Analysis of Multi-Receiver Wireless Power Transfer System

Tian Tan¹, Kainan Chen¹, Ye Jiang¹, Zhengming Zhao¹, Liqiang Yuan¹ Tsinghua University, China

WoP40 Adaptive Capacitance Impedance Matching (ACIM) of WPT Systems by Voltage

Controlled Capacitors

Stanislav Tishechkin¹, Shmuel (Sam) Ben-Yaakov¹ Ben-Gurion University, Israel

WoP41 A Wireless Power Transfer System Powering Multiple Gate Drivers in a Modular Multilevel Converter

Zhe Zhou¹, Weiguo Li^{1,2}, Chenweng Cheng³, Chao Wang², Zhanfeng Deng¹, Chris Mi³ ¹Global Energy Interconnection Research Institute, China, ²State Grid Corporation of China, China, ³San Diego State University, United States of America

18:00 - 22:00 Banquet

"Tesla's Secret London Laboratory"

Friday 21 June

Registration

08:00 Registration & Coffee

WPTC & WoW Joint Session I - High Power and Ultrasonic WPT

Kelvin Lecture Theatre

Chairs: Grant Covic, Mario Ferreira

08:25 Development of a 10 kW Wireless Power Transfer System

Alex Ridge¹, Ku Ku Ahamad¹, Richard McMahon¹, John Miles²

¹University of Warwick, United Kingdom, ²University of Cambridge, United Kingdom

08:40 Thin, Light & Flexible Magnetic Materials for 7.7 kW Wireless Power Transfer System

Zohaib Hameed¹, Milo Oien-Rochat¹, Charles Bruzzone¹, Ian Cummings¹, Jeff Keeney¹, Michael Benson¹

¹3M Company, United States of America

08:55 <u>High Efficiency Wireless Power Transfer System using a Two-stack Hybrid Metamaterial Slab</u>

Seongsoo Lee¹, Yeonje Cho², Seungtaek Jeong¹, Seokwoo Hong¹, Boogyo Sim¹, Hongseok Kim³, Joungho Kim¹

¹Korea Advanced Institute of Science and Technology (KAIST), South Korea, ²Samsung, South Korea, ³Missouri University of Science and Technology(MST), United States of America

09:10 Resistive Matching using an AC Boost Converter for Efficient Ultrasonic Wireless Power Transfer

Marc Bisschop¹, Wouter A. Serdijn¹

Delft University of Technology, The Netherlands

09:25 Mutual Inductance Modeling of In-wheel Arc-shaped Coil for In-motion WPT

Osamu Shimizu¹, Takehiro Imura¹, Hiroshi Fujimoto¹, Daisuke Gunji², Keizo Akutagawa³, Giusebbe Guidi⁴

¹University of Tokyo, Japan, ²NSK Ltd., Japan, ³Bridgestone Corporation, Japan, ⁴Sintef Energy, Norway

09:40 Transit

Plenary Talk 4

Kelvin Lecture Theatre

Chairs: Udaya Madawala, Huib Visser

09:45 Large-area Wireless Charging Enabled by Metamaterials

Irina Khromova

Metaboards, United Kingdom

Coffee Break

10:30 Coffee Break

WPTC & WoW Joint Session 2 – Moving WPT Systems

Kelvin Lecture Theatre

Chairs: David Yates, Djuradj Budimir

11:00 **Joint Invited Talk 2**

Wireless power market set to evolve beyond mobile phones – Market overview Dinesh Kithany

IHS Markit, United Kingdom

ins Markit, United Kingdom

11:25 ID-MV Position Detection Method for Wireless Power Transfer System of Electric Vehicle

Huan Zhang¹, Shihui Xu¹, Chen Yao¹, Houjun Tang¹ Shanghai Jiao Tong University, China

11:40 Separated Circular Capacitive Couplers for Rotational Misalignment of Drones

Chanjun Park¹, Jaehyoung Park¹, Yujun Shin¹, Sungryul Huh¹, Jongwook Kim¹, Seungyoung Ahn¹ ¹KAIST, South Korea

11:55 Coil Design for High Coupling Performance for Two-phase Receiver of Dynamic Wireless Charging System

Zhiyuan Wang¹, Jiantao Zhang¹, Tianhao Huang¹, Shumei Cui¹ Harbin Institute of Technology, China

12:10 – 12:45 WPW 2020 Announcement and Closing Ceremony

Kelvin Lecture Theatre

WPW2019 Sponsors

Platinum sponsors:

Gold sponsors:

GON Systems

Silver sponsors:

Bronze sponsors:

Other sponsors:

Prize sponsors:

Wireless Power Transfer Coils

www.we-online.com

Network analysis just got better.

Keysight PNA-B vector network analysis

- Latest evolution of industry's premier VNA family, same excellent RF performance as A models
- Faster time-to-results with new intuitive user interface
- Measure S-parameters, gain compression and conversion gain down to 900 Hz
- Optimize software investment with transportable and time-based licenses

For more information, visit: www.keysight.com/find/PNA

RF Amplifier Power/Frequency Chart

E&I supports the vast and exciting developments in wireless power transfer. We have a proven track record of manufacturing robust RF amplifiers; known throughout the industry for their ruggedness and reliability

www.eandiltd.com sales@eandiltd.com

We can work with you from Research to Production, Benchtop to Module.

Please contact us to learn more about our OEM Solutions.

